ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1701.09175
28
25

Skip Connections Eliminate Singularities

31 January 2017
Emin Orhan
Xaq Pitkow
ArXivPDFHTML
Abstract

Skip connections made the training of very deep networks possible and have become an indispensable component in a variety of neural architectures. A completely satisfactory explanation for their success remains elusive. Here, we present a novel explanation for the benefits of skip connections in training very deep networks. The difficulty of training deep networks is partly due to the singularities caused by the non-identifiability of the model. Several such singularities have been identified in previous works: (i) overlap singularities caused by the permutation symmetry of nodes in a given layer, (ii) elimination singularities corresponding to the elimination, i.e. consistent deactivation, of nodes, (iii) singularities generated by the linear dependence of the nodes. These singularities cause degenerate manifolds in the loss landscape that slow down learning. We argue that skip connections eliminate these singularities by breaking the permutation symmetry of nodes, by reducing the possibility of node elimination and by making the nodes less linearly dependent. Moreover, for typical initializations, skip connections move the network away from the "ghosts" of these singularities and sculpt the landscape around them to alleviate the learning slow-down. These hypotheses are supported by evidence from simplified models, as well as from experiments with deep networks trained on real-world datasets.

View on arXiv
Comments on this paper