ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1701.08547
22
29
v1v2v3 (latest)

Autotuning GPU Kernels via Static and Predictive Analysis

30 January 2017
Robert V. Lim
Boyana Norris
A. Malony
ArXiv (abs)PDFHTML
Abstract

Optimizing the performance of GPU kernels is challenging for both human programmers and code generators. For example, CUDA programmers must set thread and block parameters for a kernel, but might not have the intuition to make a good choice. Similarly, compilers can generate working code, but may miss tuning opportunities by not targeting GPU models or performing code transformations. Although empirical autotuning addresses some of these challenges, it requires extensive experimentation and search for optimal code variants. This research presents an approach for tuning CUDA kernels based on static analysis that considers fine-grained code structure and the specific GPU architecture features. Notably, our approach does not require any program runs in order to discover near-optimal parameter settings. We demonstrate the applicability of our approach in enabling code autotuners such as Orio to produce competitive code variants comparable with empirical-based methods, without the high cost of experiments.

View on arXiv
Comments on this paper