25
39

By chance is not enough: Preserving relative density through non uniform sampling

Abstract

Dealing with visualizations containing large data set is a challenging issue and, in the field of Information Visualization, almost every visual technique reveals its drawback when visualizing large number of items. To deal with this problem we introduce a formal environment, modeling in a virtual space the image features we are interested in (e.g, absolute and relative density, clusters, etc.) and we define some metrics able to characterize the image decay. Such metrics drive our automatic techniques (i.e., not uniform sampling) rescuing the image features and making them visible to the user. In this paper we focus on 2D scatter-plots, devising a novel non uniform data sampling strategy able to preserve in an effective way relative densities.

View on arXiv
Comments on this paper

We use cookies and other tracking technologies to improve your browsing experience on our website, to show you personalized content and targeted ads, to analyze our website traffic, and to understand where our visitors are coming from. See our policy.