ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1701.06675
36
86

Dynamic Mortality Risk Predictions in Pediatric Critical Care Using Recurrent Neural Networks

23 January 2017
M. Aczon
D. Ledbetter
L. Ho
A. Gunny
A. Flynn
J. Williams
R. Wetzel
ArXivPDFHTML
Abstract

Viewing the trajectory of a patient as a dynamical system, a recurrent neural network was developed to learn the course of patient encounters in the Pediatric Intensive Care Unit (PICU) of a major tertiary care center. Data extracted from Electronic Medical Records (EMR) of about 12000 patients who were admitted to the PICU over a period of more than 10 years were leveraged. The RNN model ingests a sequence of measurements which include physiologic observations, laboratory results, administered drugs and interventions, and generates temporally dynamic predictions for in-ICU mortality at user-specified times. The RNN's ICU mortality predictions offer significant improvements over those from two clinically-used scores and static machine learning algorithms.

View on arXiv
Comments on this paper