ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1701.06247
18
33

A Multichannel Convolutional Neural Network For Cross-language Dialog State Tracking

23 January 2017
Hongjie Shi
Takashi Ushio
M. Endo
K. Yamagami
Noriaki Horii
ArXivPDFHTML
Abstract

The fifth Dialog State Tracking Challenge (DSTC5) introduces a new cross-language dialog state tracking scenario, where the participants are asked to build their trackers based on the English training corpus, while evaluating them with the unlabeled Chinese corpus. Although the computer-generated translations for both English and Chinese corpus are provided in the dataset, these translations contain errors and careless use of them can easily hurt the performance of the built trackers. To address this problem, we propose a multichannel Convolutional Neural Networks (CNN) architecture, in which we treat English and Chinese language as different input channels of one single CNN model. In the evaluation of DSTC5, we found that such multichannel architecture can effectively improve the robustness against translation errors. Additionally, our method for DSTC5 is purely machine learning based and requires no prior knowledge about the target language. We consider this a desirable property for building a tracker in the cross-language context, as not every developer will be familiar with both languages.

View on arXiv
Comments on this paper