ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1701.05512
33
45

Fisher consistency for prior probability shift

19 January 2017
Dirk Tasche
ArXivPDFHTML
Abstract

We introduce Fisher consistency in the sense of unbiasedness as a desirable property for estimators of class prior probabilities. Lack of Fisher consistency could be used as a criterion to dismiss estimators that are unlikely to deliver precise estimates in test datasets under prior probability and more general dataset shift. The usefulness of this unbiasedness concept is demonstrated with three examples of classifiers used for quantification: Adjusted Classify & Count, EM-algorithm and CDE-Iterate. We find that Adjusted Classify & Count and EM-algorithm are Fisher consistent. A counter-example shows that CDE-Iterate is not Fisher consistent and, therefore, cannot be trusted to deliver reliable estimates of class probabilities.

View on arXiv
Comments on this paper