ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1701.05403
30
19

Privacy Preserving Stream Analytics: The Marriage of Randomized Response and Approximate Computing

19 January 2017
D. Quoc
Martin Beck
Pramod Bhatotia
Ruichuan Chen
Christof Fetzer
T. Strufe
ArXivPDFHTML
Abstract

How to preserve users' privacy while supporting high-utility analytics for low-latency stream processing? To answer this question: we describe the design, implementation, and evaluation of PRIVAPPROX, a data analytics system for privacy-preserving stream processing. PRIVAPPROX provides three properties: (i) Privacy: zero-knowledge privacy guarantees for users, a privacy bound tighter than the state-of-the-art differential privacy; (ii) Utility: an interface for data analysts to systematically explore the trade-offs between the output accuracy (with error-estimation) and query execution budget; (iii) Latency: near real-time stream processing based on a scalable "synchronization-free" distributed architecture. The key idea behind our approach is to marry two existing techniques together: namely, sampling (used in the context of approximate computing) and randomized response (used in the context of privacy-preserving analytics). The resulting marriage is complementary - it achieves stronger privacy guarantees and also improves performance, a necessary ingredient for achieving low-latency stream analytics.

View on arXiv
Comments on this paper