ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1701.05291
46
110

Heterogeneous Information Network Embedding for Meta Path based Proximity

19 January 2017
Zhipeng Huang
N. Mamoulis
    GNN
ArXivPDFHTML
Abstract

A network embedding is a representation of a large graph in a low-dimensional space, where vertices are modeled as vectors. The objective of a good embedding is to preserve the proximity between vertices in the original graph. This way, typical search and mining methods can be applied in the embedded space with the help of off-the-shelf multidimensional indexing approaches. Existing network embedding techniques focus on homogeneous networks, where all vertices are considered to belong to a single class.

View on arXiv
Comments on this paper