ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1701.04099
13
104

Field-aware Factorization Machines in a Real-world Online Advertising System

15 January 2017
Yu-Chin Juan
Damien Lefortier
O. Chapelle
ArXivPDFHTML
Abstract

Predicting user response is one of the core machine learning tasks in computational advertising. Field-aware Factorization Machines (FFM) have recently been established as a state-of-the-art method for that problem and in particular won two Kaggle challenges. This paper presents some results from implementing this method in a production system that predicts click-through and conversion rates for display advertising and shows that this method it is not only effective to win challenges but is also valuable in a real-world prediction system. We also discuss some specific challenges and solutions to reduce the training time, namely the use of an innovative seeding algorithm and a distributed learning mechanism.

View on arXiv
Comments on this paper