This work presents a fast and scalable algorithm for incremental learning of Gaussian mixture models. By performing rank-one updates on its precision matrices and determinants, its asymptotic time complexity is of \BigO{NKD^2} for data points, Gaussian components and dimensions. The resulting algorithm can be applied to high dimensional tasks, and this is confirmed by applying it to the classification datasets MNIST and CIFAR-10. Additionally, in order to show the algorithm's applicability to function approximation and control tasks, it is applied to three reinforcement learning tasks and its data-efficiency is evaluated.
View on arXiv