16
13

Analysis of Distributed ADMM Algorithm for Consensus Optimization in Presence of Error

Abstract

ADMM is a popular algorithm for solving convex optimization problems. Applying this algorithm to distributed consensus optimization problem results in a fully distributed iterative solution which relies on processing at the nodes and communication between neighbors. Local computations usually suffer from different types of errors, due to e.g., observation or quantization noise, which can degrade the performance of the algorithm. In this work, we focus on analyzing the convergence behavior of distributed ADMM for consensus optimization in presence of additive node error. We specifically show that (a noisy) ADMM converges linearly under certain conditions and also examine the associated convergence point. Numerical results are provided which demonstrate the effectiveness of the presented analysis.

View on arXiv
Comments on this paper

We use cookies and other tracking technologies to improve your browsing experience on our website, to show you personalized content and targeted ads, to analyze our website traffic, and to understand where our visitors are coming from. See our policy.