ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1701.03162
35
47

Real-time eSports Match Result Prediction

10 December 2016
Yifan Yang
Tian Qin
Yulin Lei
ArXivPDFHTML
Abstract

In this paper, we try to predict the winning team of a match in the multiplayer eSports game Dota 2. To address the weaknesses of previous work, we consider more aspects of prior (pre-match) features from individual players' match history, as well as real-time (during-match) features at each minute as the match progresses. We use logistic regression, the proposed Attribute Sequence Model, and their combinations as the prediction models. In a dataset of 78362 matches where 20631 matches contain replay data, our experiments show that adding more aspects of prior features improves accuracy from 58.69% to 71.49%, and introducing real-time features achieves up to 93.73% accuracy when predicting at the 40th minute.

View on arXiv
Comments on this paper