20
0

Job Detection in Twitter

Abstract

In this report, we propose a new application for twitter data called \textit{job detection}. We identify people's job category based on their tweets. As a preliminary work, we limited our task to identify only IT workers from other job holders. We have used and compared both simple bag of words model and a document representation based on Skip-gram model. Our results show that the model based on Skip-gram, achieves a 76\% precision and 82\% recall.

View on arXiv
Comments on this paper