ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1701.01081
23
398

SalGAN: Visual Saliency Prediction with Generative Adversarial Networks

4 January 2017
Junting Pan
Cristian Canton Ferrer
Kevin McGuinness
Noel E. O'Connor
Jordi Torres
E. Sayrol
Xavier Giró-i-Nieto
    GAN
ArXivPDFHTML
Abstract

We introduce SalGAN, a deep convolutional neural network for visual saliency prediction trained with adversarial examples. The first stage of the network consists of a generator model whose weights are learned by back-propagation computed from a binary cross entropy (BCE) loss over downsampled versions of the saliency maps. The resulting prediction is processed by a discriminator network trained to solve a binary classification task between the saliency maps generated by the generative stage and the ground truth ones. Our experiments show how adversarial training allows reaching state-of-the-art performance across different metrics when combined with a widely-used loss function like BCE. Our results can be reproduced with the source code and trained models available at https://imatge-upc.github.io/saliency-salgan-2017/.

View on arXiv
Comments on this paper