Deterministic and Probabilistic Conditions for Finite Completability of Low-rank Multi-View Data

We consider the multi-view data completion problem, i.e., to complete a matrix where the ranks of , and are given. In particular, we investigate the fundamental conditions on the sampling pattern, i.e., locations of the sampled entries for finite completability of such a multi-view data given the corresponding rank constraints. In contrast with the existing analysis on Grassmannian manifold for a single-view matrix, i.e., conventional matrix completion, we propose a geometric analysis on the manifold structure for multi-view data to incorporate more than one rank constraint. We provide a deterministic necessary and sufficient condition on the sampling pattern for finite completability. We also give a probabilistic condition in terms of the number of samples per column that guarantees finite completability with high probability. Finally, using the developed tools, we derive the deterministic and probabilistic guarantees for unique completability.
View on arXiv