126
166
v1v2 (latest)

Video-based Person Re-identification with Accumulative Motion Context

Abstract

Video based person re-identification plays a central role in realistic security and video surveillance. In this paper we propose a novel Accumulative Motion Context (AMOC) network for addressing this important problem, which effectively exploits the long-range motion context for robustly identifying the same person under challenging conditions. Given a video sequence of the same or different persons, the proposed AMOC network jointly learns appearance representation and motion context from a collection of adjacent frames using a two-stream convolutional architecture. Then AMOC accumulates clues from motion context by recurrent aggregation, allowing effective information flow among adjacent frames and capturing dynamic gist of the persons. The architecture of AMOC is end-to-end trainable and thus motion context can be adapted to complement appearance clues under unfavorable conditions (e.g. occlusions). Extensive experiments are conduced on three public benchmark datasets, i.e., the iLIDS-VID, PRID-2011 and MARS datasets, to investigate the performance of AMOC. The experimental results demonstrate that the proposed AMOC network outperforms state-of-the-arts for video-based re-identification significantly and confirm the advantage of exploiting long-range motion context for video based person re-identification, validating our motivation evidently.

View on arXiv
Comments on this paper

We use cookies and other tracking technologies to improve your browsing experience on our website, to show you personalized content and targeted ads, to analyze our website traffic, and to understand where our visitors are coming from. See our policy.