ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1612.08967
33
6

Efficient iterative policy optimization

28 December 2016
Nicolas Le Roux
ArXivPDFHTML
Abstract

We tackle the issue of finding a good policy when the number of policy updates is limited. This is done by approximating the expected policy reward as a sequence of concave lower bounds which can be efficiently maximized, drastically reducing the number of policy updates required to achieve good performance. We also extend existing methods to negative rewards, enabling the use of control variates.

View on arXiv
Comments on this paper