Generalized Optimal Matching Methods for Causal Inference
We develop an encompassing framework and theory for matching and related methods for causal inference that reveal the connections and motivations behind various existing methods and give rise to new and improved ones. The framework is given by generalizing a new functional analytical characterization of optimal matching as minimizing worst-case conditional mean squared error given the observed data and specific restrictions and assumptions. By generalizing these, we obtain a new class of generalized optimal matching (GOM) methods, for which we provide a single theory for tractability and consistency that applies generally to GOM. Many commonly used existing methods are included in GOM and using their GOM interpretation we extend these to new methods that judiciously and automatically trade off balance for variance and outperform their standard counterparts. As a subclass of GOM, we develop kernel optimal matching, which, as supported by new theory, is notable for combining the interpretability of matching methods, the non-parametric model-free consistency of optimal matching, the efficiency of well-specified regression, the efficiency and robustness of augmented inverse propensity weight estimators, the judicious sample size selection of monotonic imbalance bounding methods, and the model-selection flexibility of Gaussian-process regression.
View on arXiv