48
69

A Context-aware Attention Network for Interactive Question Answering

Abstract

We develop a new model for Interactive Question Answering (IQA), using Gated-Recurrent-Unit recurrent networks (GRUs) as encoders for statements and questions, and another GRU as a decoder for outputs. Distinct from previous work, our approach employs context-dependent word-level attention for more accurate statement representations and question-guided sentence-level attention for better context modeling. Employing these mechanisms, our model accurately understands when it can output an answer or when it requires generating a supplementary question for additional input. When available, user's feedback is encoded and directly applied to update sentence-level attention to infer the answer. Extensive experiments on QA and IQA datasets demonstrate quantitatively the effectiveness of our model with significant improvement over conventional QA models.

View on arXiv
Comments on this paper