ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1612.06508
13
30

Deeply Aggregated Alternating Minimization for Image Restoration

20 December 2016
Youngjung Kim
Hyungjoo Jung
Dongbo Min
Kwanghoon Sohn
ArXivPDFHTML
Abstract

Regularization-based image restoration has remained an active research topic in computer vision and image processing. It often leverages a guidance signal captured in different fields as an additional cue. In this work, we present a general framework for image restoration, called deeply aggregated alternating minimization (DeepAM). We propose to train deep neural network to advance two of the steps in the conventional AM algorithm: proximal mapping and ?- continuation. Both steps are learned from a large dataset in an end-to-end manner. The proposed framework enables the convolutional neural networks (CNNs) to operate as a prior or regularizer in the AM algorithm. We show that our learned regularizer via deep aggregation outperforms the recent data-driven approaches as well as the nonlocalbased methods. The flexibility and effectiveness of our framework are demonstrated in several image restoration tasks, including single image denoising, RGB-NIR restoration, and depth super-resolution.

View on arXiv
Comments on this paper