ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1612.04460
23
102

Hypernyms under Siege: Linguistically-motivated Artillery for Hypernymy Detection

14 December 2016
Vered Shwartz
Enrico Santus
Dominik Schlechtweg
ArXivPDFHTML
Abstract

The fundamental role of hypernymy in NLP has motivated the development of many methods for the automatic identification of this relation, most of which rely on word distribution. We investigate an extensive number of such unsupervised measures, using several distributional semantic models that differ by context type and feature weighting. We analyze the performance of the different methods based on their linguistic motivation. Comparison to the state-of-the-art supervised methods shows that while supervised methods generally outperform the unsupervised ones, the former are sensitive to the distribution of training instances, hurting their reliability. Being based on general linguistic hypotheses and independent from training data, unsupervised measures are more robust, and therefore are still useful artillery for hypernymy detection.

View on arXiv
Comments on this paper