ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1612.03789
14
56

A Unit Selection Methodology for Music Generation Using Deep Neural Networks

12 December 2016
Mason Bretan
Gil Weinberg
Larry Heck
    MGen
ArXivPDFHTML
Abstract

Several methods exist for a computer to generate music based on data including Markov chains, recurrent neural networks, recombinancy, and grammars. We explore the use of unit selection and concatenation as a means of generating music using a procedure based on ranking, where, we consider a unit to be a variable length number of measures of music. We first examine whether a unit selection method, that is restricted to a finite size unit library, can be sufficient for encompassing a wide spectrum of music. We do this by developing a deep autoencoder that encodes a musical input and reconstructs the input by selecting from the library. We then describe a generative model that combines a deep structured semantic model (DSSM) with an LSTM to predict the next unit, where units consist of four, two, and one measures of music. We evaluate the generative model using objective metrics including mean rank and accuracy and with a subjective listening test in which expert musicians are asked to complete a forced-choiced ranking task. We compare our model to a note-level generative baseline that consists of a stacked LSTM trained to predict forward by one note.

View on arXiv
Comments on this paper