ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1612.03707
14
2

Empirical Evaluation of A New Approach to Simplifying Long Short-term Memory (LSTM)

12 December 2016
Yuzhen Lu
ArXivPDFHTML
Abstract

The standard LSTM, although it succeeds in the modeling long-range dependences, suffers from a highly complex structure that can be simplified through modifications to its gate units. This paper was to perform an empirical comparison between the standard LSTM and three new simplified variants that were obtained by eliminating input signal, bias and hidden unit signal from individual gates, on the tasks of modeling two sequence datasets. The experiments show that the three variants, with reduced parameters, can achieve comparable performance with the standard LSTM. Due attention should be paid to turning the learning rate to achieve high accuracies

View on arXiv
Comments on this paper