ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1612.02742
21
73

Joint Hand Detection and Rotation Estimation by Using CNN

8 December 2016
Xiaoming Deng
Ye Yuan
Yinda Zhang
P. Tan
Liang Chang
Shuo Yang
Hongan Wang
ArXivPDFHTML
Abstract

Hand detection is essential for many hand related tasks, e.g. parsing hand pose, understanding gesture, which are extremely useful for robotics and human-computer interaction. However, hand detection in uncontrolled environments is challenging due to the flexibility of wrist joint and cluttered background. We propose a deep learning based approach which detects hands and calibrates in-plane rotation under supervision at the same time. To guarantee the recall, we propose a context aware proposal generation algorithm which significantly outperforms the selective search. We then design a convolutional neural network(CNN) which handles object rotation explicitly to jointly solve the object detection and rotation estimation tasks. Experiments show that our method achieves better results than state-of-the-art detection models on widely-used benchmarks such as Oxford and Egohands database. We further show that rotation estimation and classification can mutually benefit each other.

View on arXiv
Comments on this paper