Martingale concentration inequalities constitute a powerful mathematical tool in the analysis of problems in a wide variety of fields ranging from probability and statistics to information theory and machine learning. Here we apply techniques borrowed from this field to quantum hypothesis testing, which is the problem of discriminating quantum states belonging to two different sequences and . We obtain upper bounds on the finite blocklength type II Stein- and Hoeffding errors, which, for i.i.d. states, are in general tighter than the corresponding bounds obtained by Audenaert, Mosonyi and Verstraete [Journal of Mathematical Physics, 53(12), 2012]. We also derive finite blocklength bounds and moderate deviation results for pairs of sequences of correlated states satisfying a (non-homogeneous) factorization property. Examples of such sequences include Gibbs states of spin chains with translation-invariant finite range interaction, as well as finitely correlated quantum states. We apply our results to find bounds on the capacity of a certain class of classical-quantum channels with memory, which satisfy a so-called channel factorization property- both in the finite blocklength and moderate deviation regimes.
View on arXiv