ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1612.00596
20
13

Learning to Search on Manifolds for 3D Pose Estimation of Articulated Objects

2 December 2016
Yu Zhang
Chi Xu
Li Cheng
    3DH
ArXivPDFHTML
Abstract

This paper focuses on the challenging problem of 3D pose estimation of a diverse spectrum of articulated objects from single depth images. A novel structured prediction approach is considered, where 3D poses are represented as skeletal models that naturally operate on manifolds. Given an input depth image, the problem of predicting the most proper articulation of underlying skeletal model is thus formulated as sequentially searching for the optimal skeletal configuration. This is subsequently addressed by convolutional neural nets trained end-to-end to render sequential prediction of the joint locations as regressing a set of tangent vectors of the underlying manifolds. Our approach is examined on various articulated objects including human hand, mouse, and fish benchmark datasets. Empirically it is shown to deliver highly competitive performance with respect to the state-of-the-arts, while operating in real-time (over 30 FPS).

View on arXiv
Comments on this paper