ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1612.00367
16
43

Large-scale Validation of Counterfactual Learning Methods: A Test-Bed

1 December 2016
Damien Lefortier
Adith Swaminathan
Xiaotao Gu
Thorsten Joachims
Maarten de Rijke
    OffRL
    CML
ArXivPDFHTML
Abstract

The ability to perform effective off-policy learning would revolutionize the process of building better interactive systems, such as search engines and recommendation systems for e-commerce, computational advertising and news. Recent approaches for off-policy evaluation and learning in these settings appear promising. With this paper, we provide real-world data and a standardized test-bed to systematically investigate these algorithms using data from display advertising. In particular, we consider the problem of filling a banner ad with an aggregate of multiple products the user may want to purchase. This paper presents our test-bed, the sanity checks we ran to ensure its validity, and shows results comparing state-of-the-art off-policy learning methods like doubly robust optimization, POEM, and reductions to supervised learning using regression baselines. Our results show experimental evidence that recent off-policy learning methods can improve upon state-of-the-art supervised learning techniques on a large-scale real-world data set.

View on arXiv
Comments on this paper