ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1611.10328
14
1

The observer-assisted method for adjusting hyper-parameters in deep learning algorithms

30 November 2016
Maciej Wielgosz
ArXivPDFHTML
Abstract

This paper presents a concept of a novel method for adjusting hyper-parameters in Deep Learning (DL) algorithms. An external agent-observer monitors a performance of a selected Deep Learning algorithm. The observer learns to model the DL algorithm using a series of random experiments. Consequently, it may be used for predicting a response of the DL algorithm in terms of a selected quality measurement to a set of hyper-parameters. This allows to construct an ensemble composed of a series of evaluators which constitute an observer-assisted architecture. The architecture may be used to gradually iterate towards to the best achievable quality score in tiny steps governed by a unit of progress. The algorithm is stopped when the maximum number of steps is reached or no further progress is made.

View on arXiv
Comments on this paper