ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1611.09159
31
23

Large-Scale Shape Retrieval with Sparse 3D Convolutional Neural Networks

28 November 2016
A. Notchenko
Yermek Kapushev
Evgeny Burnaev
    3DV
ArXivPDFHTML
Abstract

In this paper we present results of performance evaluation of S3DCNN - a Sparse 3D Convolutional Neural Network - on a large-scale 3D Shape benchmark ModelNet40, and measure how it is impacted by voxel resolution of input shape. We demonstrate comparable classification and retrieval performance to state-of-the-art models, but with much less computational costs in training and inference phases. We also notice that benefits of higher input resolution can be limited by an ability of a neural network to generalize high level features.

View on arXiv
Comments on this paper