140
524

Deep Watershed Transform for Instance Segmentation

Abstract

Most contemporary approaches to instance segmentation use complex pipelines involving conditional random fields, recurrent neural networks, object proposals, or template matching schemes. In our paper, we present a simple yet powerful end-to-end convolutional neural network to tackle this task. Our approach combines intuitions from the classical watershed transform and modern deep learning to produce an energy map of the image where object instances are unambiguously represented as basins in the energy map. We then perform a cut at a single energy level to directly yield connected components corresponding to object instances. Our model achieves an increase of 75% in performance on the challenging Cityscapes Instance Level Segmentation task over the state-of-the-art.

View on arXiv
Comments on this paper