ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1611.07752
14
34

Convergence Analysis of MAP based Blur Kernel Estimation

23 November 2016
Sunghyun Cho
Seungyong Lee
ArXivPDFHTML
Abstract

One popular approach for blind deconvolution is to formulate a maximum a posteriori (MAP) problem with sparsity priors on the gradients of the latent image, and then alternatingly estimate the blur kernel and the latent image. While several successful MAP based methods have been proposed, there has been much controversy and confusion about their convergence, because sparsity priors have been shown to prefer blurry images to sharp natural images. In this paper, we revisit this problem and provide an analysis on the convergence of MAP based approaches. We first introduce a slight modification to a conventional joint energy function for blind deconvolution. The reformulated energy function yields the same alternating estimation process, but more clearly reveals how blind deconvolution works. We then show the energy function can actually favor the right solution instead of the no-blur solution under certain conditions, which explains the success of previous MAP based approaches. The reformulated energy function and our conditions for the convergence also provide a way to compare the qualities of different blur kernels, and we demonstrate its applicability to automatic blur kernel size selection, blur kernel estimation using light streaks, and defocus estimation.

View on arXiv
Comments on this paper