We propose a new framework for pruning convolutional kernels in neural networks to enable efficient inference, focusing on transfer learning where large and potentially unwieldy pretrained networks are adapted to specialized tasks. We interleave greedy criteria-based pruning with fine-tuning by backpropagation - a computationally efficient procedure that maintains good generalization in the pruned network. We propose a new criterion based on an efficient first-order Taylor expansion to approximate the absolute change in training cost induced by pruning a network component. After normalization, the proposed criterion scales appropriately across all layers of a deep CNN, eliminating the need for per-layer sensitivity analysis. The proposed criterion demonstrates superior performance compared to other criteria, such as the norm of kernel weights or average feature map activation.
View on arXiv