ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1611.02588
36
22

Contradiction Detection for Rumorous Claims

8 November 2016
P. Lendvai
U. Reichel
ArXivPDFHTML
Abstract

The utilization of social media material in journalistic workflows is increasing, demanding automated methods for the identification of mis- and disinformation. Since textual contradiction across social media posts can be a signal of rumorousness, we seek to model how claims in Twitter posts are being textually contradicted. We identify two different contexts in which contradiction emerges: its broader form can be observed across independently posted tweets and its more specific form in threaded conversations. We define how the two scenarios differ in terms of central elements of argumentation: claims and conversation structure. We design and evaluate models for the two scenarios uniformly as 3-way Recognizing Textual Entailment tasks in order to represent claims and conversation structure implicitly in a generic inference model, while previous studies used explicit or no representation of these properties. To address noisy text, our classifiers use simple similarity features derived from the string and part-of-speech level. Corpus statistics reveal distribution differences for these features in contradictory as opposed to non-contradictory tweet relations, and the classifiers yield state of the art performance.

View on arXiv
Comments on this paper