ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1611.01988
41
11
v1v2 (latest)

Neural Functional Programming

7 November 2016
John K. Feser
Marc Brockschmidt
Alexander L. Gaunt
Daniel Tarlow
ArXiv (abs)PDFHTML
Abstract

We discuss a range of modeling choices that arise when constructing an end-to-end differentiable programming language suitable for learning programs from input-output examples. Taking cues from programming languages research, we study the effect of memory allocation schemes, immutable data, type systems, and built-in control-flow structures on the success rate of learning algorithms. We build a range of models leading up to a simple differentiable functional programming language. Our empirical evaluation shows that this language allows to learn far more programs than existing baselines.

View on arXiv
Comments on this paper