ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1611.00995
22
15

An empirical study for Vietnamese dependency parsing

3 November 2016
Dat Quoc Nguyen
Mark Dras
Mark Johnson
ArXivPDFHTML
Abstract

This paper presents an empirical comparison of different dependency parsers for Vietnamese, which has some unusual characteristics such as copula drop and verb serialization. Experimental results show that the neural network-based parsers perform significantly better than the traditional parsers. We report the highest parsing scores published to date for Vietnamese with the labeled attachment score (LAS) at 73.53% and the unlabeled attachment score (UAS) at 80.66%.

View on arXiv
Comments on this paper