ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1611.00050
31
15

Exploiting Spatio-Temporal Structure with Recurrent Winner-Take-All Networks

31 October 2016
Eder Santana
Matthew S. Emigh
Pablo Zegers
José C. Príncipe
    BDL
ArXivPDFHTML
Abstract

We propose a convolutional recurrent neural network, with Winner-Take-All dropout for high dimensional unsupervised feature learning in multi-dimensional time series. We apply the proposedmethod for object recognition with temporal context in videos and obtain better results than comparable methods in the literature, including the Deep Predictive Coding Networks previously proposed by Chalasani and Principe.Our contributions can be summarized as a scalable reinterpretation of the Deep Predictive Coding Networks trained end-to-end with backpropagation through time, an extension of the previously proposed Winner-Take-All Autoencoders to sequences in time, and a new technique for initializing and regularizing convolutional-recurrent neural networks.

View on arXiv
Comments on this paper