ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1610.09083
26
18

SOL: A Library for Scalable Online Learning Algorithms

28 October 2016
Yue-bo Wu
Guosheng Lin
Chenghao Liu
Jing Lu
Doyen Sahoo
Nenghai Yu
ArXiv (abs)PDFHTML
Abstract

SOL is an open-source library for scalable online learning algorithms, and is particularly suitable for learning with high-dimensional data. The library provides a family of regular and sparse online learning algorithms for large-scale binary and multi-class classification tasks with high efficiency, scalability, portability, and extensibility. SOL was implemented in C++, and provided with a collection of easy-to-use command-line tools, python wrappers and library calls for users and developers, as well as comprehensive documents for both beginners and advanced users. SOL is not only a practical machine learning toolbox, but also a comprehensive experimental platform for online learning research. Experiments demonstrate that SOL is highly efficient and scalable for large-scale machine learning with high-dimensional data.

View on arXiv
Comments on this paper