We consider the problem of transfer learning in an online setting. Different tasks are presented sequentially and processed by a within-task algorithm. We propose a lifelong learning strategy which refines the underlying data representation used by the within-task algorithm, thereby transferring information from one task to the next. We show that when the within-task algorithm comes with some regret bound, our strategy inherits this good property. Our bounds are in expectation for a general loss function, and uniform for a convex loss. We discuss applications to dictionary learning and finite set of predictors. In the latter case, we improve previous bounds to where is the per task sample size.
View on arXiv