ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1610.07677
18
7

A Bayesian Ensemble for Unsupervised Anomaly Detection

24 October 2016
Edward Yu
Parth Parekh
ArXiv (abs)PDFHTML
Abstract

Methods for unsupervised anomaly detection suffer from the fact that the data is unlabeled, making it difficult to assess the optimality of detection algorithms. Ensemble learning has shown exceptional results in classification and clustering problems, but has not seen as much research in the context of outlier detection. Existing methods focus on combining output scores of individual detectors, but this leads to outputs that are not easily interpretable. In this paper, we introduce a theoretical foundation for combining individual detectors with Bayesian classifier combination. Not only are posterior distributions easily interpreted as the probability distribution of anomalies, but bias, variance, and individual error rates of detectors are all easily obtained. Performance on real-world datasets shows high accuracy across varied types of time series data.

View on arXiv
Comments on this paper