ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1610.07488
16
2

Laplacian regularized low rank subspace clustering

24 October 2016
Yu Song
Yiquan Wu
ArXivPDFHTML
Abstract

The problem of fitting a union of subspaces to a collection of data points drawn from multiple subspaces is considered in this paper. In the traditional low rank representation model, the dictionary used to represent the data points is chosen as the data points themselves and thus the dictionary is corrupted with noise. This problem is solved in the low rank subspace clustering model which decomposes the corrupted data matrix as the sum of a clean and self-expressive dictionary plus a matrix of noise and gross errors. Also, the clustering results of the low rank representation model can be enhanced by using a graph of data similarity. This model is called Laplacian regularized low rank representation model with a graph regularization term added to the objective function. Inspired from the above two ideas, in this paper a Laplacian regularized low rank subspace clustering model is proposed. This model uses a clean dictionary to represent the data points and a graph regularization term is also incorporated in the objective function. Experimental results show that, compared with the traditional low rank representation model, low rank subspace clustering model and several other state-of-the-art subspace clustering model, the model proposed in this paper can get better subspace clustering results with lower clustering error.

View on arXiv
Comments on this paper