ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1610.07119
19
13

Cross Device Matching for Online Advertising with Neural Feature Ensembles : First Place Solution at CIKM Cup 2016

23 October 2016
Cong-Minh Phan
Yi Tay
T. Pham
ArXivPDFHTML
Abstract

We describe the 1st place winning approach for the CIKM Cup 2016 Challenge. In this paper, we provide an approach to reasonably identify same users across multiple devices based on browsing logs. Our approach regards a candidate ranking problem as pairwise classification and utilizes an unsupervised neural feature ensemble approach to learn latent features of users. Combined with traditional hand crafted features, each user pair feature is fed into a supervised classifier in order to perform pairwise classification. Lastly, we propose supervised and unsupervised inference techniques.

View on arXiv
Comments on this paper