ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1610.05400
17
2

Going off the Grid: Iterative Model Selection for Biclustered Matrix Completion

18 October 2016
Eric C. Chi
Liuyi Hu
A. Saibaba
A. Rao
ArXivPDFHTML
Abstract

We consider the problem of performing matrix completion with side information on row-by-row and column-by-column similarities. We build upon recent proposals for matrix estimation with smoothness constraints with respect to row and column graphs. We present a novel iterative procedure for directly minimizing an information criterion in order to select an appropriate amount row and column smoothing, namely perform model selection. We also discuss how to exploit the special structure of the problem to scale up the estimation and model selection procedure via the Hutchinson estimator. We present simulation results and an application to predicting associations in imaging-genomics studies.

View on arXiv
Comments on this paper