ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1610.02967
15
14

Distributed Convex Optimization with Many Convex Constraints

7 October 2016
Joachim Giesen
Soren Laue
ArXivPDFHTML
Abstract

We address the problem of solving convex optimization problems with many convex constraints in a distributed setting. Our approach is based on an extension of the alternating direction method of multipliers (ADMM) that recently gained a lot of attention in the Big Data context. Although it has been invented decades ago, ADMM so far can be applied only to unconstrained problems and problems with linear equality or inequality constraints. Our extension can handle arbitrary inequality constraints directly. It combines the ability of ADMM to solve convex optimization problems in a distributed setting with the ability of the Augmented Lagrangian method to solve constrained optimization problems, and as we show, it inherits the convergence guarantees of ADMM and the Augmented Lagrangian method.

View on arXiv
Comments on this paper