ResearchTrend.AI
  • Papers
  • Communities
  • Organizations
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1610.02357
  4. Cited By
Xception: Deep Learning with Depthwise Separable Convolutions
v1v2v3 (latest)

Xception: Deep Learning with Depthwise Separable Convolutions

7 October 2016
François Chollet
    MDEBDLPINN
ArXiv (abs)PDFHTML

Papers citing "Xception: Deep Learning with Depthwise Separable Convolutions"

41 / 2,941 papers shown
Title
Cascade and Parallel Convolutional Recurrent Neural Networks on
  EEG-based Intention Recognition for Brain Computer Interface
Cascade and Parallel Convolutional Recurrent Neural Networks on EEG-based Intention Recognition for Brain Computer Interface
Dalin Zhang
Lina Yao
Xiang Zhang
Sen Wang
Weitong Chen
R. Boots
72
178
0
22 Aug 2017
Practical Block-wise Neural Network Architecture Generation
Practical Block-wise Neural Network Architecture Generation
Zhaobai Zhong
Junjie Yan
Wei Wu
Jing Shao
Cheng-Lin Liu
98
126
0
18 Aug 2017
Revisiting the Effectiveness of Off-the-shelf Temporal Modeling
  Approaches for Large-scale Video Classification
Revisiting the Effectiveness of Off-the-shelf Temporal Modeling Approaches for Large-scale Video Classification
Yunlong Bian
Chuang Gan
Xiao-Chang Liu
Fu Li
Xiang Long
Yandong Li
Heng Qi
Jie Zhou
Shilei Wen
Yuanqing Lin
92
48
0
12 Aug 2017
An Empirical Study on Writer Identification & Verification from
  Intra-variable Individual Handwriting
An Empirical Study on Writer Identification & Verification from Intra-variable Individual Handwriting
Chandranath Adak
B. B. Chaudhuri
Michael Blumenstein
30
35
0
10 Aug 2017
Learning Transferable Architectures for Scalable Image Recognition
Learning Transferable Architectures for Scalable Image Recognition
Barret Zoph
Vijay Vasudevan
Jonathon Shlens
Quoc V. Le
330
5,623
0
21 Jul 2017
Channel Pruning for Accelerating Very Deep Neural Networks
Channel Pruning for Accelerating Very Deep Neural Networks
Yihui He
Xiangyu Zhang
Jian Sun
383
2,541
0
19 Jul 2017
The Devil is in the Decoder: Classification, Regression and GANs
The Devil is in the Decoder: Classification, Regression and GANs
Z. Wojna
V. Ferrari
S. Guadarrama
N. Silberman
Liang-Chieh Chen
Alireza Fathi
J. Uijlings
77
93
0
18 Jul 2017
The Reversible Residual Network: Backpropagation Without Storing
  Activations
The Reversible Residual Network: Backpropagation Without Storing Activations
Aidan Gomez
Mengye Ren
R. Urtasun
Roger C. Grosse
109
553
0
14 Jul 2017
Revisiting Unreasonable Effectiveness of Data in Deep Learning Era
Revisiting Unreasonable Effectiveness of Data in Deep Learning Era
Chen Sun
Abhinav Shrivastava
Saurabh Singh
Abhinav Gupta
VLM
221
2,418
0
10 Jul 2017
Interleaved Group Convolutions for Deep Neural Networks
Interleaved Group Convolutions for Deep Neural Networks
Ting Zhang
Guo-Jun Qi
Bin Xiao
Jingdong Wang
136
82
0
10 Jul 2017
Deep Semantic Segmentation for Automated Driving: Taxonomy, Roadmap and
  Challenges
Deep Semantic Segmentation for Automated Driving: Taxonomy, Roadmap and Challenges
Mennatullah Siam
Sara Elkerdawy
Martin Jägersand
S. Yogamani
172
167
0
08 Jul 2017
CNN features are also great at unsupervised classification
CNN features are also great at unsupervised classification
Joris Guérin
O. Gibaru
Stéphane Thiery
E. Nyiri
OODSSL
88
76
0
06 Jul 2017
ShuffleNet: An Extremely Efficient Convolutional Neural Network for
  Mobile Devices
ShuffleNet: An Extremely Efficient Convolutional Neural Network for Mobile Devices
Xiangyu Zhang
Xinyu Zhou
Mengxiao Lin
Jian Sun
AI4TS
409
6,929
0
04 Jul 2017
SchNet: A continuous-filter convolutional neural network for modeling
  quantum interactions
SchNet: A continuous-filter convolutional neural network for modeling quantum interactions
Kristof T. Schütt
Pieter-Jan Kindermans
Huziel Enoc Sauceda Felix
Stefan Chmiela
A. Tkatchenko
K. Müller
186
1,088
0
26 Jun 2017
GM-Net: Learning Features with More Efficiency
GM-Net: Learning Features with More Efficiency
Yujia Chen
Ce Li
44
6
0
21 Jun 2017
Rethinking Atrous Convolution for Semantic Image Segmentation
Rethinking Atrous Convolution for Semantic Image Segmentation
Liang-Chieh Chen
George Papandreou
Florian Schroff
Hartwig Adam
SSeg
331
8,531
0
17 Jun 2017
One Model To Learn Them All
One Model To Learn Them All
Lukasz Kaiser
Aidan Gomez
Noam M. Shazeer
Ashish Vaswani
Niki Parmar
Llion Jones
Jakob Uszkoreit
VLMViT
92
334
0
16 Jun 2017
Attention Is All You Need
Attention Is All You Need
Ashish Vaswani
Noam M. Shazeer
Niki Parmar
Jakob Uszkoreit
Llion Jones
Aidan Gomez
Lukasz Kaiser
Illia Polosukhin
3DV
1.1K
133,599
0
12 Jun 2017
Depthwise Separable Convolutions for Neural Machine Translation
Depthwise Separable Convolutions for Neural Machine Translation
Lukasz Kaiser
Aidan Gomez
François Chollet
88
279
0
09 Jun 2017
MobileNets: Efficient Convolutional Neural Networks for Mobile Vision
  Applications
MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications
Andrew G. Howard
Menglong Zhu
Bo Chen
Dmitry Kalenichenko
Weijun Wang
Tobias Weyand
M. Andreetto
Hartwig Adam
3DH
1.2K
20,998
0
17 Apr 2017
Factorization tricks for LSTM networks
Factorization tricks for LSTM networks
Oleksii Kuchaiev
Boris Ginsburg
104
113
0
31 Mar 2017
Efficient Processing of Deep Neural Networks: A Tutorial and Survey
Efficient Processing of Deep Neural Networks: A Tutorial and Survey
Vivienne Sze
Yu-hsin Chen
Tien-Ju Yang
J. Emer
AAML3DV
132
3,039
0
27 Mar 2017
Learning Chained Deep Features and Classifiers for Cascade in Object
  Detection
Learning Chained Deep Features and Classifiers for Cascade in Object Detection
Wanli Ouyang
Kun Wang
Xin Zhu
Xiaogang Wang
ObjD
57
19
0
23 Feb 2017
Understanding trained CNNs by indexing neuron selectivity
Understanding trained CNNs by indexing neuron selectivity
Ivet Rafegas
M. Vanrell
Luís A. Alexandre
Guillem Arias
FAtt
96
41
0
01 Feb 2017
QuickNet: Maximizing Efficiency and Efficacy in Deep Architectures
QuickNet: Maximizing Efficiency and Efficacy in Deep Architectures
Tapabrata Ghosh
46
6
0
09 Jan 2017
EEGNet: A Compact Convolutional Network for EEG-based Brain-Computer
  Interfaces
EEGNet: A Compact Convolutional Network for EEG-based Brain-Computer Interfaces
Vernon J. Lawhern
Amelia J. Solon
Nicholas R. Waytowich
Stephen M. Gordon
C. Hung
Brent Lance
OOD
252
2,945
0
23 Nov 2016
Deep Convolutional Neural Networks with Merge-and-Run Mappings
Deep Convolutional Neural Networks with Merge-and-Run Mappings
Liming Zhao
Jingdong Wang
Xi Li
Zhuowen Tu
Yueting Zhuang
MoMe
125
68
0
23 Nov 2016
DelugeNets: Deep Networks with Efficient and Flexible Cross-layer
  Information Inflows
DelugeNets: Deep Networks with Efficient and Flexible Cross-layer Information Inflows
Jason Kuen
Xiangfei Kong
G. Wang
Yap-Peng Tan
70
14
0
17 Nov 2016
Design of Efficient Convolutional Layers using Single Intra-channel
  Convolution, Topological Subdivisioning and Spatial "Bottleneck" Structure
Design of Efficient Convolutional Layers using Single Intra-channel Convolution, Topological Subdivisioning and Spatial "Bottleneck" Structure
Min Wang
Baoyuan Liu
H. Foroosh
66
51
0
15 Aug 2016
Inception-v4, Inception-ResNet and the Impact of Residual Connections on
  Learning
Inception-v4, Inception-ResNet and the Impact of Residual Connections on Learning
Christian Szegedy
Sergey Ioffe
Vincent Vanhoucke
Alexander A. Alemi
398
14,324
0
23 Feb 2016
Deep Residual Learning for Image Recognition
Deep Residual Learning for Image Recognition
Kaiming He
Xinming Zhang
Shaoqing Ren
Jian Sun
MedIm
2.8K
195,310
0
10 Dec 2015
Rethinking the Inception Architecture for Computer Vision
Rethinking the Inception Architecture for Computer Vision
Christian Szegedy
Vincent Vanhoucke
Sergey Ioffe
Jonathon Shlens
Z. Wojna
3DVBDL
1.4K
27,513
0
02 Dec 2015
Fast and Accurate Deep Network Learning by Exponential Linear Units
  (ELUs)
Fast and Accurate Deep Network Learning by Exponential Linear Units (ELUs)
Djork-Arné Clevert
Thomas Unterthiner
Sepp Hochreiter
321
5,546
0
23 Nov 2015
Distilling the Knowledge in a Neural Network
Distilling the Knowledge in a Neural Network
Geoffrey E. Hinton
Oriol Vinyals
J. Dean
FedML
387
19,824
0
09 Mar 2015
Batch Normalization: Accelerating Deep Network Training by Reducing
  Internal Covariate Shift
Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift
Sergey Ioffe
Christian Szegedy
OOD
1.0K
43,420
0
11 Feb 2015
Flattened Convolutional Neural Networks for Feedforward Acceleration
Flattened Convolutional Neural Networks for Feedforward Acceleration
Jonghoon Jin
Aysegül Dündar
Eugenio Culurciello
109
249
0
17 Dec 2014
Going Deeper with Convolutions
Going Deeper with Convolutions
Christian Szegedy
Wei Liu
Yangqing Jia
P. Sermanet
Scott E. Reed
Dragomir Anguelov
D. Erhan
Vincent Vanhoucke
Andrew Rabinovich
609
43,806
0
17 Sep 2014
Very Deep Convolutional Networks for Large-Scale Image Recognition
Very Deep Convolutional Networks for Large-Scale Image Recognition
Karen Simonyan
Andrew Zisserman
FAttMDE
2.1K
100,836
0
04 Sep 2014
ImageNet Large Scale Visual Recognition Challenge
ImageNet Large Scale Visual Recognition Challenge
Olga Russakovsky
Jia Deng
Hao Su
J. Krause
S. Satheesh
...
A. Karpathy
A. Khosla
Michael S. Bernstein
Alexander C. Berg
Li Fei-Fei
VLMObjD
1.8K
39,737
0
01 Sep 2014
Network In Network
Network In Network
Min Lin
Qiang Chen
Shuicheng Yan
338
6,296
0
16 Dec 2013
Visualizing and Understanding Convolutional Networks
Visualizing and Understanding Convolutional Networks
Matthew D. Zeiler
Rob Fergus
FAttSSL
656
15,935
0
12 Nov 2013
Previous
123...575859