Personalized Prediction of Vehicle Energy Consumption based on Participatory Sensing

The advent of abundant on-board sensors and electronic devices in vehicles populates the paradigm of participatory sensing to harness crowd-sourced data gathering for intelligent transportation applications, such as distance-to-empty prediction and eco-routing. While participatory sensing can provide diverse driving data, there lacks a systematic study of effective utilization of the data for personalized prediction. There are considerable challenges on how to interpolate the missing data from a sparse dataset, which often arises from participatory sensing. This paper presents and compares various approaches for personalized vehicle energy consumption prediction, including a blackbox framework that identifies driver/vehicle/environment-dependent factors and a collaborative filtering approach based on matrix factorization. Furthermore, a case study of distance-to-empty prediction for electric vehicles by participatory sensing data is conducted and evaluated empirically, which shows that our approaches can significantly improve the prediction accuracy.
View on arXiv