ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1609.09018
59
3

Deep Architectures for Face Attributes

28 September 2016
T. Baumgartner
Jack Culpepper
    CVBM
ArXiv (abs)PDFHTML
Abstract

We train a deep convolutional neural network to perform identity classification using a new dataset of public figures annotated with age, gender, ethnicity and emotion labels, and then fine-tune it for attribute classification. An optimal sharing pattern of computational resources within this network is determined by experiment, requiring only 1 G flops to produce all predictions. Rather than fine-tune by relearning weights in one additional layer after the penultimate layer of the identity network, we try several different depths for each attribute. We find that prediction of age and emotion is improved by fine-tuning from earlier layers onward, presumably because deeper layers are progressively invariant to non-identity related changes in the input.

View on arXiv
Comments on this paper