ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1609.08017
30
50

Dropout with Expectation-linear Regularization

26 September 2016
Xuezhe Ma
Yingkai Gao
Zhiting Hu
Yaoliang Yu
Yuntian Deng
Eduard H. Hovy
    UQCV
ArXivPDFHTML
Abstract

Dropout, a simple and effective way to train deep neural networks, has led to a number of impressive empirical successes and spawned many recent theoretical investigations. However, the gap between dropout's training and inference phases, introduced due to tractability considerations, has largely remained under-appreciated. In this work, we first formulate dropout as a tractable approximation of some latent variable model, leading to a clean view of parameter sharing and enabling further theoretical analysis. Then, we introduce (approximate) expectation-linear dropout neural networks, whose inference gap we are able to formally characterize. Algorithmically, we show that our proposed measure of the inference gap can be used to regularize the standard dropout training objective, resulting in an \emph{explicit} control of the gap. Our method is as simple and efficient as standard dropout. We further prove the upper bounds on the loss in accuracy due to expectation-linearization, describe classes of input distributions that expectation-linearize easily. Experiments on three image classification benchmark datasets demonstrate that reducing the inference gap can indeed improve the performance consistently.

View on arXiv
Comments on this paper