ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1609.07859
9
6

Visual Fashion-Product Search at SK Planet

26 September 2016
Taewan Kim
Seyeong Kim
Sangil Na
Hayoon Kim
Moonki Kim
Beyeongki Jeon
ArXivPDFHTML
Abstract

We build a large-scale visual search system which finds similar product images given a fashion item. Defining similarity among arbitrary fashion-products is still remains a challenging problem, even there is no exact ground-truth. To resolve this problem, we define more than 90 fashion-related attributes, and combination of these attributes can represent thousands of unique fashion-styles. The fashion-attributes are one of the ingredients to define semantic similarity among fashion-product images. To build our system at scale, these fashion-attributes are again used to build an inverted indexing scheme. In addition to these fashion-attributes for semantic similarity, we extract colour and appearance features in a region-of-interest (ROI) of a fashion item for visual similarity. By sharing our approach, we expect active discussion on that how to apply current computer vision research into the e-commerce industry.

View on arXiv
Comments on this paper