ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1609.07738
23
7

Fast Blended Transformations for Partial Shape Registration

25 September 2016
A. Shtern
Matan Sela
Ron Kimmel
    3DH
ArXivPDFHTML
Abstract

Automatic estimation of skinning transformations is a popular way to deform a single reference shape into a new pose by providing a small number of control parameters. We generalize this approach by efficiently enabling the use of multiple exemplar shapes. Using a small set of representative natural poses, we propose to express an unseen appearance by a low-dimensional linear subspace, specified by a redundant dictionary of weighted vertex positions. Minimizing a nonlinear functional that regulates the example manifold, the suggested approach supports local-rigid deformations of articulated objects, as well as nearly isometric embeddings of smooth shapes. A real-time non-rigid deformation system is demonstrated, and a shape completion and partial registration framework is introduced. These applications can recover a target pose and implicit inverse kinematics from a small number of examples and just a few vertex positions. The result reconstruction is more accurate compared to state-of-the-art reduced deformable models.

View on arXiv
Comments on this paper