30
43

Bounds on the prediction error of penalized least squares estimators with convex penalty

Abstract

This paper considers the penalized least squares estimator with arbitrary convex penalty. When the observation noise is Gaussian, we show that the prediction error is a subgaussian random variable concentrated around its median. We apply this concentration property to derive sharp oracle inequalities for the prediction error of the LASSO, the group LASSO and the SLOPE estimators, both in probability and in expectation. In contrast to the previous work on the LASSO type methods, our oracle inequalities in probability are obtained at any confidence level for estimators with tuning parameters that do not depend on the confidence level. This is also the reason why we are able to establish sparsity oracle bounds in expectation for the LASSO type estimators, while the previously known techniques did not allow for the control of the expected risk. In addition, we show that the concentration rate in the oracle inequalities is better than it was commonly understood before.

View on arXiv
Comments on this paper

We use cookies and other tracking technologies to improve your browsing experience on our website, to show you personalized content and targeted ads, to analyze our website traffic, and to understand where our visitors are coming from. See our policy.